Home Formula Collection Area and perimeter

Area and perimeter

Here are formulas for area and perimeter of geometric shapes together. Note the formulas, which is in the gray areas. They are just going to pull over in GeoGebra.

Circle

Circle The area A of a circle:

A = π • \(R 2 )

The circumference(Perimeter) O of a circle:

O = 2 • r • π

Areal=π*r^2
Omkreds=2*r*π

Pie Slice

Cirkeludsnit1The area A of a pie

A = \(\frac{1}{2}\) • \(R 2 ) • \(\theta)

\(\theta) in radians. (see conversion)

Arc length = r • \(\theta)

Angle in radians

Areal=0.5*r^2*v
buelængde= r * v

Angle in degrees

Area = 0.5 * r^2 * (v * π/180)
Arc length = r * (v * π/180)

Arc Segment

Arc Segment

The area A of the green area (circle section):

A = \(\frac{1}{2}\) • \(R 2 ) • (\(\theta) – its (\(\theta))

\(\theta) in radians. (see conversion)

 

Angle in radians

Area = 0.5 * r ^ 2 *(v - its(v))

Angle in degrees

Area = 0.5 * r ^ 2 *((v * π/180) - its((v * π/180)))

Annulus

Cirkelring1

The area A of the green area (annulus):

A = π • ( \(R ^ 2 ) – \(R 2 ))

 

 

A = π *(R ^ 2-r ^ 2)

Ellipse

Ellipse

Area A of the ellipse:

A = π • a • b

Circumference O of the ellipse:

O = 2 • n • \(\sqrt[]{ \frac{1}{2} \cdot (a^2 b^2) } \)

Area = π * a * b
Omkreds= 2*π*sqrt(0.5*(a ^ 2   b ^ 2))

Rectangle

A rectangle is a square, Who 4 pages, which are mutually equal and all interior angles is 90 degrees.

RectangleArea A of the rectangle

A = l • b (length times width)

Circumference O of rectangle

O = 2 • l + 2 • b

Area = L * b
Omkreds = 2*l + 2*b

Square

A square is a square, Who 4 equal sides and all interior angles is 90 degrees.

SquareA square area of

A = \(s^2) (s = side length)

Circumference O of square

O = 4 • s

Areal = s^2
Omkreds = 4*s