Home Formulo Amling La oran sekcio

La oran sekcio

La oran sekcioEn la angla nomas “La oran sekcio” efektive “La golde rilatumo”, signifo la ora proporcio. La oran sekcio / kondiĉoj estas 1:1.618.

“La oran sekcio” Matematiko estas la tuta vero pri la ora proporcio. Pro tio, la termino “Ĝi Gyldne parlamento” ne povas esti tute preciza. Kiam ĝi ankoraŭ nomis la ora proporcio, do eble havas ion por fari kun, ke en la historio uzante. matematiko provis ŝarĝi antauxen, kiam, ekzemple, konstruaĵojn aŭ pentraĵoj estas belaj. Ĝi estas farita / desegnitaj en certa rilatumo (la ora proporcio, la dian kortegon / kondiĉoj), tial la plej multaj homoj devus priskribi ilin kiel estante bela.

Parthenon

Malnovaj konstruaĵoj

Vi trovos plurajn malnovajn konstruaĵojn en antikva Grekio, kiu estas desegnita laŭ la ora proporcio, signifo, La rilatumo de la alteco kaj larĝeco estas pri 1:1.618. Ĉi tie maldekstre montras la bildon de la antikva konstruaĵo Panteón en Grekio. Sed vi ankaŭ trovos konstruaĵoj en Danio. En Kopenhago, SAS konstruaĵo kiel la ora ortangulo.

Fibonaĉi-tal

Solsikke-spiralFibonaĉi estas serio de nombroj, kiel matematikisto de la sama nomo ĉirkaŭ la 1200s uzata por priskribi la kurzo de kresko en kunikloj. La nombro vico povas esti viditaj en pluraj kuntekstoj en naturo. Ĝi troviĝas, ekzemple, inter la sunfloro floroj, pino konusoj, klingo, Florbrasiko Aliaj. Sed ankaŭ en filmo, muziko, arto m.m. Ĝi povas legu pli pri angle tien.

Estas kurioza rilato inter la ora proporcio kaj la tn Fibonacci nombroj, Tiel la serio de nombroj:
1, 1, 2, 3, 5, 8, 13, 21…

Ajna nombro en la Fibonacci nombro sekvenco estas difinita kiel la sumo de la du antaŭvenanta nombroj. 13 Estas, ekzemple, la sumo de 5 kaj 8. Kaj en la sekvanta numero post 21 estas 34, kiel 13+21 estas 34.

La rilatumo de la du najbaraj Fibonacci nombroj estas proksimumaj 1.618:1! La pli grandaj Fibonacci nombroj estas, la pli proksima al la rilatumo de la ora sekcio (aŭ ora proporcio).

5:3 = 1,67
8:5 = 1,6
13:8 = 1,625
21:13 = 1,615

Fibonacci i kunst

www.maths.surrey.ac.uk