Hauv qab no yog qauv rau cheeb tsam puag ncig ntawm daim duab ua ke. Nco ntsoov tus qauv, raws li tau teev nyob rau hauv qhov chaw grey. Lawv cia li mus rub hauv GeoGebra.
Vajvoog
Thaj tsam A ntawm ib lub vajvoog:
A = Π • \(r^2\)
Tus puag ncig(Puag ncig) O ntawm ib lub vajvoog:
O = 2 • r • π
Areal=π*r^2
Omkreds=2*r*π
Ncuav qab zib hlais
Thaj tsam A ntawm ib lub ncuav hlais
IB TUG = \(\frac{1}{2}\) • \(r^2\) • \(\theta\)
\(\theta\) nyob rau hauv radians. (saib conversion)
Ntev ntawm kab = r • \(\theta\)
Lub kaum ntse ntse nyob rau hauv radians
Areal=0.5*r^2*v buelængde= r * v
Lub hauv degrees
Areal = 0.5 * r^2 * (v * π/180) Buelængde = r * (v * π/180)
Vajvoog seem
Qhov (A) ntawm lub tshav ntsuab (vajvoog seem):
IB TUG = \(\frac{1}{2}\) • \(r^2\) • (\(\theta\) – nws cov (\(\theta\))
\(\theta\) nyob rau hauv radians. (saib conversion)
Lub kaum ntse ntse nyob rau hauv radians
Areal=0.5*r^2*(v - nws cov(v))
Lub hauv degrees
Areal=0.5*r^2*((v * π/180) - nws cov((v * π/180)))
Vajvoog ntiv nplhaib
Qhov (A) ntawm lub tshav ntsuab (vajvoog ntiv nplhaib):
A = Π • ( \(R^2\) – \(r^2\))
A=π*(R^2-r^2)
Ellipse
Thaj chaw (A) lub ellipse:
A = π • muaj • b
Ib ncig (O) ntawm cov ellipse:
O = 2 • π • \(\sqrt[]{ \frac{1}{2} \cdot\ (a^2+ b^2) } \)
Areal= π * (a) * b Omkreds= 2*π*sqrt(0.5*(ib tug ^ 2 b ^ 2))
Duab plaub
Tus duab plaub yog ib lub xwmfab, uas muaj 4 nplooj ntawv, som er parvis lige store og alle indvendige vinkler er 90 degrees.
Qhov (A) ntawm daim duab plaub
A = l • b (sij hawm dav)
Ib ncig O duab plaub
O = 2 • (l) + 2 • (b)
Areal = l * b Omkreds = 2*l + 2*(b)
Xwmfab
Ib lub xwmfab yog ib lub xwmfab, uas muaj 4 lige store sider og alle indvendige vinkler er 90 degrees.
IB TUG = \(s^2\) (s = sab ntev)
Ib ncig O xwmfab
O = 4 • s
Areal = s^2
Omkreds = 4*s