Tsev Formula Collection Thaj tsam thiab puag ncig

Thaj tsam thiab puag ncig

Hauv qab no yog qauv rau cheeb tsam puag ncig ntawm daim duab ua ke. Nco ntsoov tus qauv, raws li tau teev nyob rau hauv qhov chaw grey. Lawv cia li mus rub hauv GeoGebra.

Vajvoog

Vajvoog Thaj tsam A ntawm ib lub vajvoog:

A = Π • \(r^2\)

Tus puag ncig(Puag ncig) O ntawm ib lub vajvoog:

O = 2 • r • π

Areal=π*r^2
Omkreds=2*r*π

Ncuav qab zib hlais

Cirkeludsnit1Thaj tsam A ntawm ib lub ncuav hlais

IB TUG = \(\frac{1}{2}\) • \(r^2\) • \(\theta\)

\(\theta\) nyob rau hauv radians. (saib conversion)

Ntev ntawm kab = r • \(\theta\)

Lub kaum ntse ntse nyob rau hauv radians

Areal=0.5*r^2*v
buelængde= r * v

Lub hauv degrees

Areal = 0.5 * r^2 * (v * π/180)
Buelængde = r * (v * π/180)

Vajvoog seem

Vajvoog seem

Qhov (A) ntawm lub tshav ntsuab (vajvoog seem):

IB TUG = \(\frac{1}{2}\) • \(r^2\) • (\(\theta\) – nws cov (\(\theta\))

\(\theta\) nyob rau hauv radians. (saib conversion)

 

Lub kaum ntse ntse nyob rau hauv radians

Areal=0.5*r^2*(v - nws cov(v))

Lub hauv degrees

Areal=0.5*r^2*((v * π/180) - nws cov((v * π/180)))

Vajvoog ntiv nplhaib

Cirkelring1

Qhov (A) ntawm lub tshav ntsuab (vajvoog ntiv nplhaib):

A = Π • ( \(R^2\) – \(r^2\))

 

 

A=π*(R^2-r^2)

Ellipse

Ellipse

Thaj chaw (A) lub ellipse:

A = π • muaj • b

Ib ncig (O) ntawm cov ellipse:

O = 2 • π • \(\sqrt[]{ \frac{1}{2} \cdot\ (a^2+ b^2) } \)

Areal= π * (a) * b
Omkreds= 2*π*sqrt(0.5*(ib tug ^ 2   b ^ 2))

Duab plaub

Tus duab plaub yog ib lub xwmfab, uas muaj 4 nplooj ntawv, som er parvis lige store og alle indvendige vinkler er 90 degrees.

Duab plaubQhov (A) ntawm daim duab plaub

A = l • b (sij hawm dav)

Ib ncig O duab plaub

O = 2 • (l) + 2 • (b)

Areal = l * b
Omkreds = 2*l + 2*(b)

Xwmfab

Ib lub xwmfab yog ib lub xwmfab, uas muaj 4 lige store sider og alle indvendige vinkler er 90 degrees.

XwmfabThaj chaw (A) lub xwmfab

IB TUG = \(s^2\) (s = sab ntev)

Ib ncig O xwmfab

O = 4 • s

Areal = s^2
Omkreds = 4*s