Nta

Hauv qab no yog qauv thiab yuav tsum, uas tau muab siv tau nrog rau nws qhov kev siv.

Tseem ceeb!! Geogebra distinguishes los thiab lub zog. Hvis du vil kunne bruge forskellige kommandoer på funktionerne, ces koj yuav tsum tsuas sau nyob rau hauv lub thawv input, ib sab ntawm cov kev cai, hnyuj hnyo tom qab lub chaw kos npe. Hom 2x + 3, tab sis nws hais tias y = 2 x + 3.

First-degree muaj nuj nqi

Kev cai

Rette linjer

Cov kev cai rau First-degree muaj nuj nqi (ib txoj kab ncaj nraim)

\((f)(x)\) = \((a) yog muaj) • x + \((b) yog muaj)

Tus nqi \((a) yog muaj) yog hu ua tus nqes hav los yog xov tooj nqes hav. Value hloov \((a) yog muaj) tej yam hais txog, npaum li cas tus kab qab lossis decreases. Yog hais tias \((a) yog muaj) yog muaj, kom cov kab loj. Yog hais tias \((a) yog muaj) tam sim no, vim li ntawd tus kab no tsis.

Tus nqi \((b) yog muaj) qhia rau, hvor linjen skærer y-aksen (tus ntsug).

Piv txwv li no, yuav lub teeb uas muaj cov kab f(x) = 2 x + 3 yuav twv mus rau 3 på y-aksen ($ 2,000 Lawm. igennem punktet (0,3) ) thiab sawv (nqes hav) nrog 2.

Cim

Piv txwv, yog koj xav kom nws kos hauv GeoGebra, ces koj cia li ntaus ntawv nyob rau hauv lub thawv input

2x + 3

 

Andengradsfunktion

Parabler

Kev cai

Cov kev cai rau ib tug andengradsfunktion (ib parabola)

\((f)(x)\) = \((a) yog muaj) • x yog muaj(^ 2 yog muaj) + \((b) yog muaj) • x + \((c) yog muaj)

Cov hauv paus hniav thiab pinned

Koj yuav nrhiav tau cov hauv paus hniav(Qws) (skæringspunkter med x-aksen) thiab vertex (extremum) thaum uas siv cov. følgende kommandoer i input-feltet

Qws[(f)]
Extremum[(f)]

Cim

Piv txwv tias, yog koj xav tau cov kev kos npe ua \((f)(x)\) = 2 x yog muaj(^ 2 yog muaj) + 3 x – 4 , li no xwb koj yuav ntaus ntawv nram qab no nyob rau ntawm lub box input

2*x ^ 2 + 3*x - 4

Lub discriminant

Discriminant (D) hais tias ib yam dab tsi txog, Cov hauv paus hniav ntau npaum li cas(skæringspunkter med x-aksen) muaj cov teeb. Tus discriminant yuav muab suav siv. lub mis, uas yog hu ua

D = \(b ^ 2 yog muaj) – 4 • \((a) yog muaj) • \((c) yog muaj)

  1. Yog hais tias (D) < 0 (tsawg dua 0) txiav cov ceg txiv parablens’ TSIS X-aksen (TSIS MUAJ TSHUAJ RAU KAB ZAUV)
  2. Yog D = 0 (sib npaug 0) txiav cov ceg txiv parablens’ X-aksen IB TUG qhov chaw. (Kua x =-b /(2(a)))
  3. Yog hais tias (D) > 0 (siab tshaj 0) txiav cov ceg txiv parablens’ X-aksen OB TUG me ntsis.

Lub ntsiab s1 = (-b √ (D))/(2(a)) thiab S2 = (-(b)-√ D)/(2(a))

Pab ntxiv yog kev tus ib-, b- thiab c-qhov tseem ceeb

Xws li sawv pab ntxiv yog me ntsis txog, Zoo li cas (a), (b) thiab (c) qhov tseem ceeb yog hais txog lub teeb ntawm lub muaj nuj nqi.

ib tug yog tus nqes hav ntawm tus

  1. Yog hais tias ib tug yuav tsis pom koj lem parablens cov ceg’ downward. (nyuj nyav npau taws)
  2. Yog hais tias ib tug yuav zoo koj lem parablens cov ceg’ ces. (nyuj nyav zoo siab)
  3. Qhov ntau dua ib tug, Tiam sis, narrower parabola
  4. Tsawg tus, Tiam sis, parabola nrug

(b) hais tias ib yam dab tsi txog, hvor parablen ligger i forhold til y-aksen.

  1. Yog b = 0, så ligger parablens toppunkt på y-aksen.
  2. Yog hais tias ib tug thiab b yog tus kos npe rau tib, så ligger toppunktet til venstre for y-aksen.
  3. Yog hais tias ib tug thiab b muaj ntau yam, så ligger toppunktet til højre for y-aksen.

c er parablens skæringspunkt med y-aksen.

  1. Yog c = 0, så går parablen igennem punktet (0,0)